国产经典一区,国产精品欧美日韩一区二区,精品国产麻豆,欧美日韩国产网站

熱門搜索:掃描電鏡,臺式掃描電鏡,制樣設備CP離子研磨儀,原位樣品桿,可視化顆粒檢測,高分辨臺式顯微 CT,粉末原子層沉積系統,納米氣溶膠沉積系統
技術文章 / article 您的位置:網站首頁 > 技術文章 > ALD 用戶經典文獻分享|非均勻 ALD 涂層包覆 NCM 工藝的界面研究

ALD 用戶經典文獻分享|非均勻 ALD 涂層包覆 NCM 工藝的界面研究

發布時間: 2024-12-25  點擊次數: 1373次

 

作者:科羅拉多大學 Amanda L. Hoskins 等人

文章:Nonuniform Growth of Sub?2 Nanometer Atomic Layer Deposited Alumina Films on Lithium Nickel Manganese Cobalt Oxide Cathode Battery Materials

 

摘要

 

鋰離子電池的廣泛應用在很大程度上依賴于正極材料的性能。然而,這些材料在循環過程中容易出現容量衰減、過渡金屬溶解和結構失穩等問題,限制了電池的使用壽命和穩定性。鋰鎳錳鈷氧化物(LiNi0.33Mn0.33Co0.33O2,簡稱NMC111)是一種高效的正極材料,但其穩定性較差,尤其是在高電壓條件下。

 

 

表面工程是解決這些問題的重要策略,其中,通過涂覆薄膜保護正極顆粒表面可有效減少電解質與活性材料之間的副反應。原子層沉積(ALD)技術因其精確的厚度控制和高均勻性,成為研究熱點。然而,大多數研究假設 ALD 涂層為均勻覆蓋,忽視了薄膜在低循環數下的非均勻性及其對電池性能的潛在影響。本文作者借助 Forge Nano 流化床原子層沉積系統,通過多種表面分析技術,系統研究了低循環數 ALD 氧化鋁涂層在 NMC111 表面的非均勻生長特性及其對電池性能的影響,為優化涂層設計提供了新的思路。

 

實驗方法

 

本研究選用商業化的NMC111(LiNi0.33Mn0.33Co0.33O2)作為研究對象,通過使用 Forge Nano 流化床原子層沉積系統進行ALD氧化鋁薄膜的沉積。實驗中,氧化鋁 ALD 薄膜通過 TMA/水反應在 NMC111 顆粒表面生長,反應溫度為 120°C。通過低能離子散射(LEIS)和二次離子質譜(SIMS)等表征手段,對不同 ALD 循環次數下薄膜的生長特性進行了深入分析。

 

結果與討論

 

1.ALD 薄膜的非均勻生長特性

 

通過 LEIS 和 SIMS 分析,研究發現在低循環次數下,ALD 氧化鋁薄膜在 NMC111 顆粒表面的生長是非均勻的。在低于 10 個 ALD 循環時,薄膜并未全覆蓋顆粒表面,而是優先在過渡金屬結合位點上沉積,而對表面的鋰覆蓋較少。即使在 10 個 ALD 循環后,鋰仍然存在于正極粉末表面。這一發現與現有假設相悖,即 ALD 薄膜在顆粒上均勻生長并全覆蓋表面。

 

2.ALD 薄膜對電池性能的影響

 

盡管 ALD 薄膜在 NMC111 顆粒表面的沉積是非均勻的,但研究表明這種非均勻性可能對電池性能有積極影響。非均勻的 ALD 薄膜在穩定過渡金屬氧化物的同時,并未阻斷鋰離子的插層通道,從而在電解液存在的情況下提高了電池正極活性材料的循環穩定性。這一發現證實了在 ALD 涂層正極顆粒的合成表面上鋰仍然暴露,并且當使用少于 10 個 ALD 循環時,ALD 薄膜是非均勻生長的。

 

3.ALD 薄膜生長機制的探討

 

鋰離子電池的廣泛應用在很大程度上依賴于正極材料的性能。然而,這些材料在循環過程中容易出現容量衰減、過渡金屬溶解和結構失穩等問題,限制了研究進一步探討了 ALD 薄膜的生長機制。

 

結果表明,ALD 過程以復雜的方式發展,初始沉積優先覆蓋了 Mn、Co 和 Ni 過渡金屬氧化物。超過 10 個循環后,Mn、Co 和 Ni 被全覆蓋,但 Al 信號持續增加,表明 ALD 層尚未全覆蓋表面。這一現象表明,一部分仍然暴露在外,且表面未被 ALD 層全覆蓋。

 

圖1展示了(a)鋁和(b)錳及鎳鈷特征峰的 LEIS 譜圖。隨著循環次數的增加,鋁信號增加,同時錳和鎳鈷信號相應減少,表明薄膜正在基底表面形成。經過 10 次氧化鋁 ALD 循環后,錳和鎳鈷的峰被全抑制。

 

圖2. 集成的 LEIS 數據表示隨著 ALD 循環次數增加的表面分數覆蓋情況。Mn、Co 和 Ni 在 10 個TMA/H2O ALD 循環后被全覆蓋。然而,表面的鋁尚未達到全薄膜的飽和狀態,這表明 ALD 優先在Mn、Co 和 Ni 位點上沉積,而留下 Li 未被覆蓋,直到形成連續薄膜。

 

通過 TOF-SIMS 分析,證實了 LEIS 的結果,即盡管 LEIS 無法直接測量鋰,但過渡金屬位點的全覆蓋發生在整個表面全覆蓋之前。耦合這些結果表明,ALD過程中,氧化鋁通過優先覆蓋過渡金屬位點從而形成涂層。但在低循環次數下,外層由 Li、Al 和 O 組成,這可能是由于循環的死Li以及內部 Li 遷移穿過基底和現有薄膜產生的表面位點。

 

圖3:來自 TOF-SIMS 分析的離子圖像。從上到下依次展示了 Li、Ni、Mn、Co 和 Al 信號的圖像,氧化鋁循環次數從左到右顯示。圖像顯示了隨著氧化鋁在樣品上的沉積,Li 的濃度逐漸降低。然而,與代表Ni、Mn 和 Co 的信號相比,Li 信號并未被全抑制。Ni、Mn 和 Co 信號的抑制表明它們幾乎被全覆蓋。TOF-SIMS 圖像中顏色的強度與測量深度內的元素濃度相關。顏色強度可能相當主觀,因此本研究的結果也通過 圖4 中呈現的信號計數以數值形式展示。15個循環的鋰圖像中可見的強度變化可以歸因于粒徑/曲率和z高度的大變化。

 

 

圖4:TOF-SIMS圖譜中 Li、Al、Ni、Mn 和 Co 的絕對信號計數。內嵌表格展示了經過 4 個循環和 15 個循環的氧化鋁 ALD 后,NMC 正極主要成分(Li、Ni、Mn 和 Co)相對于未涂層樣品的殘余信號百分比。這些值清楚地表明,ALD 更傾向于在過渡金屬表面位點上沉積氧化鋁,并且在此處展示的 15 個 ALD 循環內,未能實現表面鋰的全覆蓋,即使氧化鋁的厚度超過 1 納米。

 

圖5:對 LiOH、Li2CO3 和 NMC111 進行 TMA/H2O ALD 循環后,比較了面積標準化的鋁(Al)重量百分比。ICPMS 得到的鋁重量百分比數據通過每個未涂層基底粉末的 BET 比表面積進行了標準化。LiOH 上相較于 Li2CO3 更高的生長速率表明,在 Al2O3 ALD 過程中,這些表面表現出不同的特性,這對于觀察到的 NMC 基底上 Al2O3 的生長有重要影響??雌饋碓谧畛醯拇蠹s 9 個 ALD 循環中發生了一些非 ALD 反應,可能是形成了 Li-Al 氧化物產物,直到從 10 到15 個循環時才沉積出典型的 Al2O3 ALD 薄膜。

 

圖6:使用 ALD 包覆后的 NCM111 材料的 EDS 分析

 

圖7:ALD 包覆 NCM111 材料的 TEM 圖像,顯示4 cycle 的包覆是不連續的涂層,15 cycle 的包覆形成了較為連續的涂層。

 

4  ALD 薄膜對電池性能提升的機制

 

基于上述結果,研究提出了 ALD 薄膜提升電池性能的可能機制。非均勻的低循環 ALD 薄膜可能通過在前面 10 個循環內產生的未受阻的路徑促進 Li 離子的移動,這些路徑由于表面覆蓋的非均勻性而使部分Li暴露。顯然,ALD 優先在正極顆粒表面的過渡金屬結合位點上沉積,并在最初幾個循環中較少地覆蓋表面 Li 。對于 2nm 以下薄膜而言,了解此處報告的優先沉積對于未來先進工程正極顆粒表面至關重要,其中控制表面組分的穩定可能產生一類新的高性能正極。

 

總結與結論

 

本研究通過實驗和分析,揭示了 ALD 氧化鋁薄膜在 NMC 正極材料上的生長特性和機制。研究發現,低循環次數下 ALD 薄膜的生長是非均勻的,這種非均勻性可能對電池性能有積極影響。非均勻的 ALD 薄膜在穩定過渡金屬氧化物的同時,并未阻斷鋰離子的插層通道,從而提高了電池正極活性材料的循環穩定性。這一發現對于理解 ALD 薄膜如何提升電池性能具有重要意義,并為未來正極材料表面改性提供了新的思路。



  • 聯系電話電話4008578882
  • 傳真傳真
  • 郵箱郵箱cici.yang@phenom-china.com
  • 地址公司地址上海市閔行區虹橋鎮申濱路88號上海虹橋麗寶廣場T5,705室
© 2025 版權所有:復納科學儀器(上海)有限公司   備案號:滬ICP備12015467號-5   sitemap.xml   管理登陸   技術支持:制藥網       
  • 公眾號二維碼




国产经典一区,国产精品欧美日韩一区二区,精品国产麻豆,欧美日韩国产网站
久久亚洲精品一区| 狠狠入ady亚洲精品| 国产一区二区三区久久久久久久久| 亚洲一区二区精品视频| 欧美激情四色| 亚洲激情黄色| 国产欧美一区二区精品婷婷| 久久国产福利| 亚洲国产精品视频| 国产私拍一区| 久久国产精品黑丝| 一区二区在线视频| 国产精品免费电影| 久久精视频免费在线久久完整在线看| 激情欧美一区| 国产老女人精品毛片久久| 久久国内精品视频| 亚洲国产岛国毛片在线| 国产日韩欧美麻豆| 裸体歌舞表演一区二区| 亚洲精品久久久久久久久久久久久 | 久久午夜羞羞影院免费观看| 在线观看国产成人av片| 欧美激情一区二区三区不卡| 久久久五月婷婷| 亚洲精选国产| 国产欧美精品va在线观看| 国产精品第三页| 久久综合九色综合欧美就去吻| 91久久夜色精品国产网站| 影音先锋久久资源网| 欧美色欧美亚洲另类七区| 欧美精品www| 欧美专区日韩专区| 亚洲蜜桃精久久久久久久| 亚洲国产精品美女| 国产精品一区=区| 国产精品女人毛片| 欧美大秀在线观看| 欧美成人免费大片| 欧美一区午夜精品| 99re6热只有精品免费观看 | 国产一区二区久久久| 女同性一区二区三区人了人一| 久久躁狠狠躁夜夜爽| 亚洲视频精品| 亚洲电影免费观看高清| 伊人夜夜躁av伊人久久| 国产精品久久久久婷婷| 国产精品v日韩精品| 欧美高清在线视频| 欧美日韩国产首页在线观看| 久久精品综合| 可以看av的网站久久看| 香蕉av福利精品导航| 日韩视频免费观看高清在线视频| 亚洲精品欧美| 精品动漫一区| 亚洲欧洲精品一区| 黄色在线一区| 亚洲黄色尤物视频| 狠狠干成人综合网| 1024国产精品| 狠狠操狠狠色综合网| 亚洲成人资源| 黄色日韩在线| 亚洲精品资源美女情侣酒店| 狠狠综合久久av一区二区小说 | 国产视频在线观看一区二区三区| 欧美日韩午夜剧场| 国产精品五月天| 欧美日韩亚洲综合| 国产精品一区二区在线| 欧美四级在线| 国产亚洲一级| 国产精品综合| **欧美日韩vr在线| 伊大人香蕉综合8在线视| 亚洲人成小说网站色在线| 狠狠久久五月精品中文字幕| 亚洲国产另类久久精品| 一区二区在线观看av| 亚洲精品系列| 日韩视频精品在线观看| 欧美一级在线亚洲天堂| 久久综合九色综合欧美就去吻| 久久av老司机精品网站导航| 男女视频一区二区| 嫩模写真一区二区三区三州| 欧美日韩一区高清| 欧美色播在线播放| 国内精品视频在线播放| 国产日韩欧美在线播放| 亚洲激情电影在线| 亚洲国产精品小视频| 亚洲综合二区| 免费av成人在线| 美女精品在线观看| 国产精品久久久久7777婷婷| 国产精品免费一区二区三区在线观看| 影音先锋亚洲视频| 亚洲电影免费观看高清完整版在线观看| 亚洲视频免费在线| 欧美69wwwcom| 欧美极品在线播放| 国产日韩欧美二区| 一色屋精品亚洲香蕉网站| 亚洲一区二区三区高清不卡| 久久亚洲国产成人| 男女激情视频一区| 国产偷自视频区视频一区二区 | 欧美日韩免费高清| 欧美视频1区| 亚洲二区精品| 99riav1国产精品视频| 久久精品一区二区| 国产精品乱子乱xxxx| 国产区精品视频| 一级成人国产| 欧美成人综合| 欧美视频在线观看 亚洲欧| 原创国产精品91| 亚洲精品美女在线| 久久午夜电影网| 国产精品一区二区久久精品| 国内激情久久| 午夜精品偷拍| 国产精品videossex久久发布| 国产欧美日韩视频在线观看| 99精品视频免费全部在线| 久久一区亚洲| 欧美日韩成人综合在线一区二区 | 国产一区二区三区观看| 在线播放视频一区| 欧美专区在线观看一区| 国产精品乱码一区二区三区| 国内激情久久| 久久aⅴ国产欧美74aaa| 国产精品美腿一区在线看| 激情久久综合| 久久久久久噜噜噜久久久精品| 国产精品jvid在线观看蜜臀 | 亚洲欧美日韩综合一区| 欧美日韩国产一区| 国产精品亚洲精品| 亚洲欧美精品在线| 国产精品扒开腿做爽爽爽视频| 国产一区二区三区自拍| 午夜在线观看欧美| 国产精品免费网站| 在线观看国产日韩| 久久一本综合频道| 激情丁香综合| 久久伊人精品天天| 国产精品多人| 一区二区三区久久久| 欧美日韩激情小视频| 精品99一区二区三区| 久久噜噜亚洲综合| 亚洲成人在线视频网站| 久热精品视频在线观看一区| 国产精品免费观看视频| 亚洲一区久久久| 国产精品社区| 亚洲免费成人av电影| 欧美女同视频| 夜夜嗨av色一区二区不卡| 欧美色欧美亚洲高清在线视频| 激情成人av在线| 欧美 日韩 国产 一区| 亚洲黄色一区二区三区| 欧美极品色图| 尤物精品国产第一福利三区| 亚洲女人小视频在线观看| 欧美日韩免费一区二区三区| 国产视频不卡| 亚洲制服少妇| 欧美日韩在线播放| 亚洲大片免费看| 欧美国内亚洲| 一区二区免费在线视频| 欧美午夜精品理论片a级按摩| 亚洲国产日韩在线一区模特| 欧美激情久久久久| 一区二区高清在线| 欧美午夜精品久久久| 亚洲免费黄色| 国产精品久久久久久久午夜 | 亚洲国产精品嫩草影院| 欧美人与禽猛交乱配视频| 在线精品在线| 欧美日韩hd| 午夜亚洲福利在线老司机| 黑人巨大精品欧美一区二区| 六月丁香综合| 激情久久婷婷| 欧美日韩亚洲一区二区三区在线观看| 亚洲女人av| 亚洲国产精品久久91精品| 欧美日韩另类一区|